Ключи ответов

Решение каждой задачи оценивается целым числом баллов от 0 до 10.

В исключительных случаях допускаются оценки, кратные 0,5 балла.

Проверка работ осуществляется Жюри олимпиады согласно стандартной методике

оценивания решений:

Баллы	Правильность (ошибочность) решения
10	Полное верное решение
8-9	Верное решение. Имеются небольшие недочеты, в целом не влияющие на решение
6-7	Решение в целом верное, однако, содержит существенные ошибки (не физические, а математические)
4-5	Найдено решение одного из двух возможных случаев
2-3	Есть понимание физики явления, но не найдено одно из необходимых для решения уравнений, в результате полученная система уравнений не полна и невозможно найти решение
0-1	Есть отдельные уравнения, относящиеся к сути задачи при отсутствии решения (или при ошибочном решении)
0	Решение неверное, или отсутствует

Максимальный балл за всю работу – 50.

№ 1

На прогулке.

Петя договорился встретится с Игорем в парке и на встречу взял с собой пса Шарика. Когда Петя увидел на дорожке парка Игоря, расстояние между ними было L. Он тут же отпустил Шарика, и тот со всех ног бросился к Игорю со скоростью v_0 в 3 раза превышающей скорость сближения ребят. Шарик, добежав до Игоря, некоторое время идет рядом с ним, а затем бросается к своему хозяину. Пройдясь с хозяином, пес снова бежит к его другу, и так несколько раз. За время сближения приятелей Шарик провел возле каждого из них одинаковое время. Общая длина пути, который успел пройти и пробежать пес, равна 2L. Сколько времени Шарик бегал со скоростью v_0 , если мальчики встретились через 1 минуту 40 секунд? (Скорости мальчиков считать постоянными все время движения).

Решение:

 v_1 – скорость Пети, v_2 – скорость Игоря.

Время встречи мальчиков $T = L/(v_1 + v_2)$. $L = T*(v_1 + v_2)$

Пусть t – время, которое Шарик провел, находясь рядом с каждым мальчиком.

Тогда вместе с Петей и Игорем Шарик прошел часть пути $L_1 = t(v_1 + v_2)$.

Все остальное время $t_1 = T - 2t$ Шарик бегал со скоростью v_0 .

За это время он пробежал расстояние $L_2 = (T - 2t)*3*(v_1 + v_2)$.

По условию Шарик пробежал путь $2L = L_1 + L_2$, значит

 $2 T^*(v_1 + v_2) = t(v_1 + v_2) + (T - 2t)^* 3^*(v_1 + v_2).$

Отсюда t = 0.2T, $t_1 = 0.6T = 60c$.

Критерии оценивания:

Найдена связь между Т и L	2
Найдена связь между t и L ₁	2
Найдена связь между t ₁ и L ₂	2
Записано выражение, связывающее разные времена (t = 0,2T)	3

Получен численный ответ	1
-------------------------	---

№ 2

Металлические шайбы.

Теплоизолированный сосуд был до краев наполнен водой при температуре 19° С. В этот сосуд быстро, но аккуратно опустили шайбу, изготовленную из металла плотностью 2700 кг/м^3 , нагретую до температуры 99° С, и закрыли крышкой. После установления теплового равновесия температура воды в сосуде стала равна $32,2^{\circ}$ С. Затем в точно такой же сосуд, наполненный до краев водой при температуре 19° С, опустили уже две шайбы, нагретые до температуры 99° С, и закрыли крышкой. В этом случае после установления теплового равновесия в сосуде температура воды стала $48,8^{\circ}$ С. Чему равна удельная теплоемкость металла, из которого изготовлены шайбы? Плотность воды 1000 кг/м^3 , удельная теплоемкость воды $4200 \text{ Дж/(кг*}^{\circ}$ С).

Решение:

$$t_0 = 19^0$$
С, $t_{\pi} = 99^0$ С, $t_{\kappa} = 32,2^0$ С, $t_{\kappa} = 48,8^0$ С, $\rho_1 = 2700$ кг/м³, $\rho_0 = 1000$ кг/м³, $c_0 = 4200$ Дж/(кг* 0 С). Пусть объем сосуда равен V_0 , а объем детали, соответственно, V_1 .

Запишем уравнения теплового баланса для первого и для второго случаев:

$$c_1 \rho_1 V_1(t_{\pi} - t_x) = c_0 \rho_0 (V_0 - V_1)(t_x - t_0),$$

 $c_1 \rho_1 \cdot 2V_1(t_{\pi} - t_y) = c_0 \rho_0 (V_0 - 2V_1)(t_y - t_0).$

Преобразуем эти выражения:

$$c_1 \rho_1 V_1 \frac{t_{\mathcal{A}} - t_x}{t_x - t_0} + c_0 \rho_0 V_1 = c_0 V_0 \rho_0,$$

$$c_1 \rho_1(2V_1) \frac{t_{\mathcal{A}} - t_y}{t_y - t_0} + c_0 \rho_0(2V_1) = c_0 V_0 \rho_0.$$

Из равенства правых частей уравнений следует равенство левых частей, на объем V_1 можно сократить:

$$c_1 \rho_1 \frac{t_A - t_x}{t_x - t_0} + c_0 \rho_0 = 2c_1 \rho_1 \frac{t_A - t_y}{t_y - t_0} + 2c_0 \rho_0,$$

откуда

$$c_1 = c_0 \frac{\rho_0}{\rho_1} \frac{1}{\left(\frac{t_{\mathcal{A}} - t_x}{t_x - t_0} - 2\frac{t_{\mathcal{A}} - t_y}{t_y - t_0}\right)} = 919,642 \text{ Дж/(кг} \cdot ^{\circ}\text{C}) \approx 920 \text{ Дж/(кг} \cdot ^{\circ}\text{C}).$$

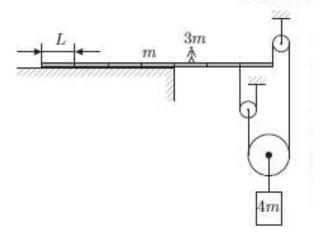
Критерии опенивания:

критерии оценивания.		
Записано уравнение теплового баланса (5)	3	
Записано уравнение теплового баланса (6)	3	
Получено выражение для теплоёмкости с ₁	3	
Получен числовой ответ	1	

№ 3

Опасная затея

Доска массой m лежит, выступая на 3/7 своей длины, на краю обрыва. Длина одной седьмой части доски L=1 м. К свисающему краю доски с помощью невесомых блоков и нитей (рис. 1) прикреплён противовес, имеющий массу 4m. На каком расстоянии от края обрыва на доске может стоять человек массой 3m, чтобы доска оставалась горизонтальной?



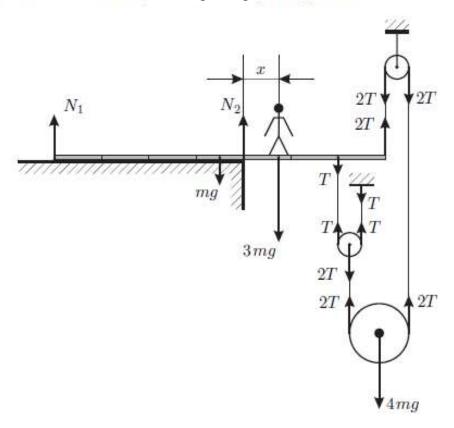
Решение:

Из невесомости блоков и нитей найдём связь между силами натяжения нитей (см. рис). Заметим, что равновесие может нерущить од как при опрокультирами, поски стиссителя

может нарушиться как при опрокидывании доски относительно края обрыва, так и при подъеме правого конца вверх. Расставим силы, действующие на доску и в системе. Из условия равновесия нижнего блока 4T = 4mg, или T = mg. Рассмотрим случай, когда доска опрокидывается влево (правый конец идёт вверх), тогда сила реакции опоры приложена к левому концу доки (N_I на рис.). Запишем правило моментов для сил, приложенных к левому концу доски, относительно этой точки:

$$mg\frac{7L}{2} + 3mg(4L + x_1) + T \cdot 6L = 2T \cdot 7L$$
, откуда $x_1 = -\frac{5L}{2} < 0$,

То есть человек может на 2,5 м зайти от края обрыва влево.



Теперь рассмотрим случай, когда доска опрокидывается вправо (правый конец идет вниз), тогда сила реакции опоры приложена к точке, находящейся на расстоянии 4L от левого конца доски (N_2 на рис.). Запишем правило моментов сил, приложенных к доске, относительно этой точки:

$$mg\frac{L}{2}+2T\cdot 3L=3mgx_2+T\cdot 2L,$$
 откуда $x_2=\frac{3L}{2}>0,$

то есть человек может на 1,5 м выйти вправо за край обрыва. При нахождении человека между этими крайними точками система будет в равновесии, а сила реакции опоры N будет приложена где-то между рассмотренными крайними положениями.

Критерии оценивания:

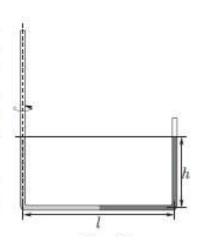
Указаны все силы (кроме силы реакции опоры), действующие на доску, и их точки приложения	1
Найдены силы натяжения нитей	1
Указана точка приложения силы реакции опоры в случае, когда правый конец доски	1,5
поднимается	1,5
Записано правило моментов для первого случая	1,5
Найдено расстояние x_1	1
Указана точка приложения силы реакции опоры в случае, когда правый конец доски опускается	1,5
Записано правило моментов для второго случая	1,5
Найдено расстояние x_2	1

Nº 4

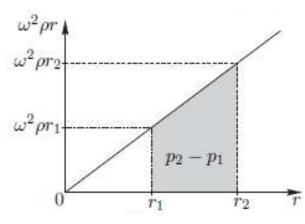
Вода и ртуть

В тонкой U-образной трубке постоянного сечения находится вода и ртуть одинаковых объемов. Длина горизонтальной части трубки l=40 см. Трубку раскрутили вокруг колена с водой (см. рис), и оказалось, что уровни жидкостей в трубке одинаковы и равны h=25 см. Пренебрегая эффектом смачивания, определите период T вращения трубки.

Справочные данные: ускорение свободного падения $g = 9.8 \text{ м/c}^2$; плотность воды и ртути равны $\rho_{\theta} = 1.0 \text{ г/см}^3 \rho_{p} = 13.5 \text{ г/см}^3$ соответственно.



Решение:



получим:

Найдём изменение давления в горизонтальной части трубки. Для этого запишем уравнение движения малого элемента жидкости длиной Δr , находящегося на расстоянии r от оси вращения:

$$a_{uc}\rho S\Delta r = \omega^2 r \rho S\Delta r = S\Delta p,$$

где ω – угловая скорость вращения трубки, Δp – перепад давления на концах малого элемента жидкости длиной Δr . При вычислении разности давлений на концах горизонтального участка трубки (заштрихованная площадь под графиком (см. рис.))

$$p_2 - p_1 = \omega^2 \rho (r_2 - r_1) \cdot \frac{r_1 + r_2}{2} = \omega^2 \rho \frac{r_2^2 - r_1^2}{2}.$$

Перепад давлений между правым и левым коленом равен сумме перепадов давлений в горизонтальной части трубки, заполненной водой и ртутью:

$$p_2 - p_1 = \omega^2 \rho_{\rm B} \frac{(l/2)^2 - 0}{2} + \omega^2 \rho_{\rm p} \frac{l^2 - (l/2)^2}{2} = (3\rho_{\rm p} + \rho_{\rm B}) \frac{\omega^2 l^2}{8}.$$

Этот перепад давлений и поддерживает разность давлений вертикальных столбов воды и ртути:

$$(3\rho_{\rm p}+\rho_{\rm B})\frac{\omega^2l^2}{8}=\rho_{\rm p}gh-\rho_{\rm B}gh,$$
 откуда $\omega=\sqrt{\frac{8gh}{l^2}\cdot\frac{\rho_{\rm p}-\rho_{\rm B}}{3\rho_{\rm p}+\rho_{\rm B}}}.$ Период вращения
$$T=\frac{2\pi}{\omega}=\frac{\pi l}{\sqrt{2gh}}\cdot\sqrt{\frac{3\rho_{\rm p}+\rho_{\rm B}}{\rho_{\rm p}-\rho_{\rm B}}}\approx 1.0~{\rm c}.$$

Критерии оценивания:

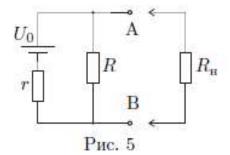
Ron repair opening.	
Найден период давлений на концах малого элемента жидкости Δr	2
Указано, как найти разность давлений на горизонтальном участке (график или интегрирование)	1
Найдена разность давлений на горизонтальном участке (7)	1
Посчитан перепад давлений для ртути в горизонтальном участке (8)	1
Посчитан перепад давлений для воды в горизонтальном участке (8)	1
Записано выражение (9)	2
Получен ответ для периода в общем виде	1
Получен численный ответ для периода	1

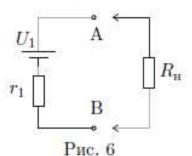
№ 5

Эквивалентная схема

Приведена блок-схема регулируемого источника постоянного тока (рис. 5). Идеальная батарея, обеспечивающая постоянное напряжение U_0 , защищена от короткого замыкания резистором, сопротивление которого r. Выходное напряжение задается резистором сопротивлением R. К выходным разъемам A и B подключают нагрузку, сопротивление которой R_H .

Для упрощения расчета силы тока, текущего через нагрузку R_H , схему регулируемого источника принято представлять в виде эквивалентной схемы (рис. 6), обеспечивающей такую же силу тока, текущего через нагрузку, как и реальный источник (рис. 5). Выразите напряжение U_I и сопротивление r_I эквивалентной схемы через параметры (U_0 , R и r) источника.





Решение:

Первое решение

Найдём напряжение U_{AB} на разъёмах регулируемого источника в зависимости от силы тока I,

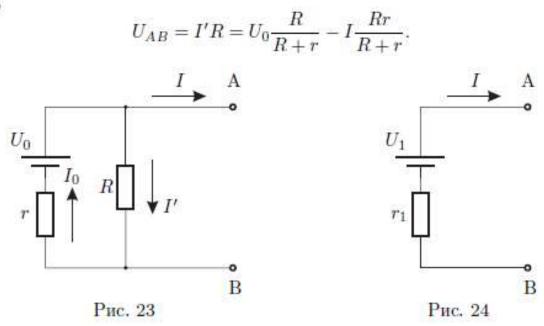
текущего через нагрузку (см. рис.):

$$U_{AB} = U_0 - I_0 r = I'R$$
.

Учитывая, что $I_0 = I + I'$, можно выразить I':

$$U_0 - (I + I')r = I'R$$
, откуда $I' = \frac{U_0 - Ir}{R + r}$.

Значит,



Для эквивалентной схемы (рис. 24):

$$U_{AB} = U_1 - Ir_1$$
.

Чтобы при любом значении I формулы (4) и (5) давали одинаковый результат, необходимо

$$U_1 = U_0 \frac{R}{R+r}, \qquad r_1 = \frac{Rr}{R+r}.$$

Примечание. При решении этой задачи можно сравнивать не только напряжение на разъемах источника, но и силу тока через нагрузку, взяв в качестве параметра, например, сопротивление нагрузки.

Второе решение

Напряжение U_I эквивалентной схемы есть показания вольтметра, подключенного к выводам A и В. Так что по условию схемы эквивалентны, при подключении к исходной схеме вольтметр показывает то же самое:

$$U_1 = U_0 \frac{R}{R+r}.$$

При коротком замыкании между выводами A и B исходной схемы течет ток силой $I_{\kappa,3} = U_0/r$. При коротком замыкании выводов эквивалентной схемы сила тока должна быть такой же, причем ток течёт только через резистор r_1 , поэтому:

$$r_1 = \frac{U_1}{I_{\text{\tiny K.3.}}} = r \cdot \frac{U_1}{U_0} = \frac{Rr}{R+r}.$$

Критерии оценивания:

Первое решение:

Получено выражение (4), или любое другое выражение, связывающее напряжение или ток	3
нагрузки с величиной, взятой в качестве параметра для исходной схемы	
Получено выражение (4), или любое другое выражение, связывающее напряжение или ток	1
нагрузки с величиной, взятой в качестве параметра для эквивалентной схемы	1
В работе присутствует идея, что при любых значениях параметра выражения (4) и (5) должны	2
давать одинаковый результат	
Указано, какие именно величины должны быть равными, чтобы при любых значениях	2
параметра выражения (4) и (5) давали одинаковый результат	
Найдено U_I	1
Найдено r_1	1

Второе решение:

Bropoc pemenne.	
Указано, что при подключении вольтметра к разным схемам должно быть одинаковое	2
напряжение	
Найдено U_I	2
Указано, что сила тока короткого замыкания одинакова	2
Найдена сила тока КЗ для исходной схемы	1
Найдена сила тока КЗ для эквивалентной схемы	1
Найдено r_1	2